320 | 9 | 46 |
下载次数 | 被引频次 | 阅读次数 |
本文对两种烯烃类工质HFO-1336mzz(Z)和HCFO-1224yd(Z)的热物性进行分析,将在高温热泵系统中替代HFC-245fa作为目标,根据混合工质HCFO-1224yd(Z)/HFO-1336mzz(Z)在高温热泵循环中主要热物性特点建立混合工质高温热泵理论循环模型,对比不同工况下混合工质在高温热泵系统中的循环性能,发现混合工质中HFO-1336mzz(Z)可以降低压缩机排气温度以及提高热泵性能系数(COP),HCFO-1224yd(Z)可以改善高温热泵系统吸气比容过大问题。结果表明,当冷凝温度为150℃,循环温升变化区间为50~70℃时,HCFO-1224yd(Z)/HFO-1336mzz(Z)的质量百分比为0.6/0.4的混合工质的循环性能最优;当循环温升为70℃,冷凝温度变化区间为110~150℃时,HCFO-1224yd(Z)/HFO-1336mzz(Z)的组分比为0.2/0.8的混合工质的COP最大达到3.11。
Abstract:In this paper, the thermosphysical properties of HFO-1336mzz(Z) and HCFO-1224yd(Z) are analyzed.In order to replace HFC-245fa in high-temperature heat pump system, the theoretical cycle model of high-temperature heat pump with mixed refrigerant HCFO-1224yd(Z)/HFO-1336mzz(Z) is established according to the main thermal physical properties of HCFO-1224yd(Z)/HFO-1336mzz(Z). By comparing the cycle performance of the refrigerant mixture in the high temperature heat pump system under different working conditions, it is found that HFO-1336mzz(Z) could reduce the exhaust temperature of compressor and increase the heat pump coefficient of performance(COP), and HCFO-1224yd(Z) could improve the problem of excessive suction specific volume in high temperature heat pump systems. The result shows that the refrigerant mixture with 0.6/0.4 HCFO-1224yd(Z)/HFO-1336mzz(Z) has the best cycle performance when the condensing temperature is 150 ℃ and the cycle temperature rise varies from 50-70 ℃; the value of COP of the refrigerant mixture with the composition ratio of HCFO-1224yd(Z)/HFO-1336mzz(Z) of 0.2/0.8 reaches the maximum of 3.11 when the cycle temperature rise is 70 ℃ and the condensation temperature change range is 110-150 ℃.
[1]陈东.热泵技术手册[M].北京:化学工业出版社,2012.
[2]刘瑶瑶,张迪,卢朋,等.高温热泵工质研究进展[J].浙江化工, 2020, 51(7):6-9, 21.
[3]滑雪,李雄亚,韩美顺. 2019年度中国制冷剂产品市场分析[J].制冷技术, 2020, 40(增刊1):51-59.
[4]邹冠星,李泽琛,张楠楠.第5章冷媒产品市场分析[J].制冷技术, 2019, 39(增刊1):53-62.
[5]荆华乾. 2019年度中国制冷行业政策分析[J].制冷技术, 2020, 40(增刊1):2-8.
[6]马一太,王派,李敏霞,等. GB 9237—2017《制冷系统及热泵安全与环境要求》的解读:关于制冷剂的安全性[J].制冷技术, 2020, 40(2):8-14.
[7]杨梦,张华,孟照峰,等.新型环保高温工质HFO-1336mzz(Z)的研究进展[J].制冷学报, 2019, 40(6):46-52, 110.
[8] MD J A, MOHAMMAD A I, KEISHI K, et al.Measurement of thermal conductivity of cis-1,1,1,4,4,4-hexafluoro-2-butene(R-1336mzz(Z)by the transient hot-wire method[J]. International Journal of Refrigeration, 2017, 84:220-227.
[9] KATSUYUKI T, JUNICHI I, KONSTANTINOS K K.Thermodynamic properties of HFO-1336mzz(E)(trans-1,1,1,4,4,4-hexafluoro-2-butene)at saturation conditions[J]. International Journal of Refrigeration, 2017,82:283-287.
[10] MD J A, KOTARO Y, YOSHIYA H, et al. Measurement of thermal conductivity and viscosity of cis-1-chloro-2,3,3,3-tetrafluoropropene(R-1224yd(Z)[J].International Journal of Refrigeration, 2019, 104:221-228.
[11] LAURA F, SERGIO B, MAURO S, et al. HCFO refrigerant cis-1-chloro-2,3,3,3 tetrafluoropropene(R1224yd(Z):experimental assessment and correlation of the liquid density[J]. International Journal of Refrigeration, 2020, 193:116-120.
[12] ADRIAN M B, CARLOS M R, JOAQUIN N E, et al.Optimisation of high-temperature heat pump cascades with internal heat exchangers using refrigerants with low global warming potential[J]. Energy, 2018, 1651248-1258.
[13] CARLOS M R, JOAQUIN N E, ADRIAN M B, et al.Thermodynamic analysis of low GWP alternatives to HFC-245fa in high-temperature heat pumps:HCFO-1224yd(Z), HCFO-1233zd(E)and HFO-1336mzz(Z)[J].Applied Thermal Engineering, 2019, 152:762-777.
[14] CARLOS M R, ADRIAN M B, JOAQUIN N E, et al.Multi-objective optimization of a novel reversible high-temperature heat pump-organic Rankine cycle(HTHP-ORC)for industrial low-grade waste heat recovery[J]. Energy Conversion and Management, 2019,197:111-118.
[15] CARLOS M R, SAMER S, ADRIAN M B, et al. High temperature heat pump integration into district heating network[J]. Energy Conversion and Management, 2020,210:112-117.
[16] CARLOS M R, JOAQUIN N E, ADRIAN M B, et al.Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery[J]. Applied Energy, 2019, 253:113-118.
[17] GUIDO F F, LORENZO F, UMBERTO D. Analysis of suitability ranges of high temperature heat pump working fluids[J]. Applied Thermal Engineering, 2019, 150:628-640.
[18]昝成,史琳. ODP为零的热泵混合工质性能匹配及非共沸特性研究[J].制冷学报, 2008, 28(4):8-12.
[19]芮胜军,张华,吴裕庆.非共沸混合工质单级压缩回热循环实验研究[J].制冷学报, 2012, 33(6):63-67.
[20]董小波.高温电动热泵工质循环性能理论与实验研究[D].北京:华北电力大学, 2019.
[21]周福,杨卫卫,曹兴起,等.三种高温热泵混合工质的理论研究[J].工程热物理学报, 2015, 36(4):703-708.
[22]郑贤德.制冷原理与装置[M]. 2版.北京:机械工业出版社, 2001:34-35.
基本信息:
DOI:
中图分类号:TB657
引用信息:
[1]黄洁,张华,杨梦.环保工质HFO-1336mzz(Z)/HCFO-1224yd(Z)高温热泵的特性分析[J].制冷技术,2022,42(05):1-6.
基金信息:
国家自然科学基金(No.51606126); 上海市自然科学基金(No.20ZR1438600)