nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, v.45 1-6+12
基于可逆化学反应的选择性吸收-压缩复合热泵循环
基金项目(Foundation): 国家重点研发计划(No.2018YFC0705306); 国家自然科学基金(No.52076039)
邮箱(Email): y.yin@seu.edu.cn;
DOI:
摘要:

为了提高余热回收效率,提出一种基于氨基甲酸铵(AC)可逆化学反应与吸收式相结合的热泵系统,以热驱动为主,电驱动辅助,利用AC分解回收低品位余热,反应热可达2 010 kJ/kg,约为R134a和NH3潜热的13.4倍和1.8倍,具有很大的应用优势。结合AC反应特性建立稳态热力学模型,研究表明:随着反应温差增大,系统性能系数(COP)减小,反应温差平均每升高5℃,COP减小约4.22%,且系统运行的最大反应温差为35℃;随着AC在载体溶剂中浓度和反应转化率的增大,系统COP增大。与相同工况下常规吸收式热泵相比,AC热泵COP约为LiBr/H2O吸收式热泵COP的1.4倍、NH3/H2O吸收式热泵COP的1.8倍,具有明显的性能优势。

Abstract:

In order to improve the heat recovery efficiency, a heat pump system based on ammonium carbamate(AC) reversible chemical reaction combined with absorption is proposed, in which AC decomposes to recover waste heat. The reaction heat of AC(2 010 kJ/kg) is around 13.4 times and 1.8 times that of R134a and NH3, respectively.A steady-state thermodynamic model is established and results show that as the temperature difference of reaction increases, coefficient of performance(COP) decreases. For every 5 ℃ increase in temperature difference of reaction,the COP decreases by approximately 4.22%, and the reaction temperature difference should not exceed 35 ℃. While the greater the concentration of AC and conversion rate are, the greater the COP is. Compared with the conventional absorption heat pump cycles, the COP of AC heat pump is about 1.4 times of that of LiBr/H2O absorption heat pump and 1.8 times of NH3/H2O absorption heat pump, demonstrating significant performance advantages.

参考文献

[1] FORMAN C, MURITALA I K, PARDEMANN R, et al.Estimating the global waste heat potential[J]. Renewable and Sustainable Energy Reviews, 2016, 57:1568-1579.

[2]陈程,陈鑫,徐凤,等.燃煤机组排烟温度调控及水分回收研究[J].制冷技术, 2024, 44(4):40-46.

[3]杨昕淏,余文,张春路.排风回流对热泵新风机性能的影响[J].制冷技术, 2024, 44(6):59-63.

[4] YAN T, WANG R Z, LI T X, et al. A review of promising candidate reactions for chemical heat storage[J].Renewable and Sustainable Energy Reviews, 2015, 43:13-31.

[5]王新赫,杜轩成,魏进家.不同太阳能热化学储能体系的研究进展[J].科学通报, 2017, 62(31):3631-3642.

[6] LEFROIS R T, MINN M. Solar energy heat utilization:US4169499A[P]. 1979-10-02.

[7] JONCICH M J, SOLKA B H, BOWER J E. The thermodynamic properties of ammonium carbamate:an experiment in heterogeneous equilibrium[J]. Journal of Chemical Education, 1967, 44(10):598-600.

[8] FULKS G, FISHER G B, RAHMOELLER K. A review of solid materials as alternative ammonia sources for lean NOx reduction with SCR[R]. Warrendale, PA:SAE, 2009.

[9] JOHNSON D J, NIEDBALSKI N P, ERVIN J S, et al. A thermal management system using ammonium carbamate as an endothermic heat sink[J]. Applied Thermal Engineering, 2017, 121:897-907.

[10] NIEDBALSKI N, JOHNSON D, PATNAIK S S, et al.Study of a multi-phase hybrid heat exchanger-reactor(HEX reactor):partⅡ:numerical prediction of thermal performance[J]. International Journal of Heat and Mass Transfer, 2014, 70:1086-1094.

[11] SCHMIDT J E, DUDIS D S, MILLER D J. Expendable high energy density thermal management material:ammonium carbamate[J]. Journal of Thermophysics and Heat Transfer, 2012, 26(2):345-351.

[12]周杰,殷勇高.基于物化热效应的制冷新循环热力分析[J].化工学报, 2018, 69(增刊2):408-412.

[13]程晓琳,殷勇高,戴苏洲,等.基于氨基甲酸铵的吸附式化学热泵循环性能分析[J].制冷技术, 2020, 40(3):1-7.

[14] DAI S Z, YIN Y G, LI W G, et al. Thermodynamic analysis of a novel chemical heat pump cycle based on the physicalchemical thermal effects of reversible reaction[J]. Energy Conversion and Management, 2020, 225:113-119.

[15]陈松,杜垲.吸收式热泵初步分析与研究[J].制冷技术,2003, 23(3):12-16.

[16] JOHNSON D J, NIEDBALSKI N P, ERVIN J S, et al.Ammonium carbamate-based heat exchanger reactor as an endothermic heat sink for thermal management[J].International Journal of Heat and Mass Transfer, 2015, 91:766-776.

[17] BARZAGLI F, MANI F, PERUZZINI M. From greenhouse gas to feedstock:formation of ammonium carbamate from CO2 and NH3 in organic solvents and its catalytic conversion into urea under mild conditions[J].Green Chemistry, 2011, 13(5):1267-1274.

[18] BENNETT R N, RITCHIE P D, ROXBURGH D. The system ammonia+carbon dioxide+ammonium carbamate,part I:the equilibrium of thermal dissociation of ammonium carbamate[J]. Transactions of the Faraday Society, 1953, 49:925-929.

[19] INFANTE F C A. Thermodynamic and physical property data equations for ammonia-lithium nitrate and ammoniasodium thiocyanate solutions[J]. Solar Energy, 1984, 32(2):231-236.

[20] STEVEN B J, YANA-MOTTA S F, DOMANSKI P A.Comparitive analysis of an automotive air conditioning systems operating with CO2 and R134a[J]. International Journal of Refrigeration, 2002, 25(1):19-32.

[21] BOUROUIS M, NOGUéS M, BOER D, et al. Industrial heat recovery by absorption/compression heat pump using TFE-H2O-TEGDME working mixture[J]. Applied Thermal Engineering, 2000, 20(4):355-369.

基本信息:

DOI:

中图分类号:TQ051.5

引用信息:

[1]李伟格,殷勇高,戴苏洲.基于可逆化学反应的选择性吸收-压缩复合热泵循环[J].制冷技术,2025,45(01):1-6+12.

基金信息:

国家重点研发计划(No.2018YFC0705306); 国家自然科学基金(No.52076039)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文