nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 03, v.45 43-49
数据中心列间送风方式对热环境影响的研究
基金项目(Foundation):
邮箱(Email): lizh@tongji.edu.cn;
DOI:
摘要:

本文以浙江省某体育场的数据中心为研究对象,通过Fluent软件建立了物理模型,对其内部气流组织和热环境进行了模拟研究。首先验证了现行工况模拟结果与实际情况的一致性,并指出了现行工况存在的相关问题,然后对比分析了侧间送风、顶置送风和不同布置距离的列间送风方式对机房温度场和流场的影响,定量计算了回热指数(RHI)、机架冷却指数(RCI)和回风温度指数(RTI)等热环境评价指标。结果表明:当机房负荷和空调送风条件不变时,斜对列布置列间空调,可以使机架冷却指数保持为1,机柜进风温度适宜;而空调间距在2~3个机柜宽度时,回热指数为0.89,回风温度指数为0.99,在实验工况中均为最优值,表明机柜进风速度适宜,气流组织有序,冷量利用情况较好,具有良好的冷却效果。

Abstract:

Taking a typical data center of a sports stadium in Zhejiang province as the research object, a physical model is established using Fluent to simulate the internal air distribution and thermal environment. Firstly, the consistency between the simulation results of the current operating conditions and the actual situation is verified. Then, the effects of side-to-side air supply, overhead air supply, and different arrangement distances of inter-row air supply on the temperature field and flow field in the data center are compared and analyzed. The thermal environment evaluation indicators such as return heat index(RHI), rack cooling index(RCI), and return temperature index(RTI) are quantitatively calculated. The research results indicate that when the air conditioning is arranged diagonally between rows, the RCI can be maintained at 1, which means that the inlet air temperature of the cabinet is appropriate. Furthermore, when the air conditioner spacing is 2-3 cabinet widths, the RHI is 0.89, and the RTI index is 0.99, both of which have the optimal value, indicating that the air flow organization is orderly.

参考文献

[1]李富强,唐绍祥.中国新基建发展报告[M].北京:社会科学文献出版社, 2022.

[2]中国信息通信研究院.数据中心白皮书(2022)[EB/OL].(2022-05-10)[2023-11-01]. https://www.caict.ac.cn/English/research/whitepapers/202205/P020220510510013255944.pdf.

[3] RONG H, ZHANG H, XIAO S, et al. Optimizing energy consumption for data centers[J]. Renewable and Sustainable Energy Reviews, 2016, 58:674-691.

[4]黄翔,李婷婷,刘凯磊,等.乌鲁木齐某数据中心热环境分析及气流组织优化研究[J].西安建筑科技大学学报(自然科学版), 2019, 51(1):104-108.

[5]张玉燕,孙海峰,郑竺凌,等.上海地区水冷地板送风冷通道封闭数据中心机房气流组织优化研究[J].暖通空调, 2022, 52(增刊1):209-215.

[6] XU J, LIANG Z. Air distribution analysis and optimization layout of in-row air conditioning in data center[C]//Proceedings of the 2022 International Conference on Green Building, Civil Engineering and Smart City.Singapore:Springer Nature Singapore, 2022.

[7] JIN C, BAI X, YANG C. Effects of airflow on the thermal environment and energy efficiency in raised-floor data centers:a review[J]. The Science of the Total Environment,2019, 695:133801.

[8] SHRIVASTAVA S, SAMMAKIA B, SCHMIDT R, et al.Comparative analysis of different data center airflow management configurations[C]//International Electronic Packaging Technical Conference and Exhibition. San Francisco:ASME, 2005.

[9] ZHANG M, AN Q, LONG Z, et al. Optimization of airflow organization for a small-scale date center based on the cold aisle closure[J]. Procedia Engineering, 2017, 205:1893-1900.

[10]闵文科,孙小琴,李杰.送风方式对数据中心气流组织影响的模拟研究[J].建筑科学, 2021, 37(8):25-32.

[11] ARGHODE V K, SUNDARALINGAM V, JOSHI Y, et al.Thermal characteristics of open and contained data center cold aisle[J]. Journal of Heat Transfer, 2013, 135(6):61-69.

[12] NIEMANN J, BROWN K, AVELAR V. Impact of hot and cold aisle containment on data center temperature and efficiency[J]. APC White Paper, 2011, 135:1-14.

[13]李慧.基于图卷积神经网络的数据中心冷却模型预测控制优化方法研究[J].制冷技术, 2024, 44(4):72-78.

[14]黄国瑞,刘宏伟,赵耀,等.基于TRNSYS的数据中心制冷系统能耗分析[J].制冷技术, 2024, 44(3):36-43.

[15]陈焕新,王宜卿,张丽,等.数据中心发展进展[J].制冷技术, 2024, 44(增刊1):2-19.

[16]牛婷婷,盖东兴,李振财.数据中心机房气流组织优化分析[J].制冷技术, 2023, 43(5):81-85.

[17] SHARMA R, BASH C, PATEL C. Dimensionless parameters for evaluation of thermal design and performance of large-scale data centers[C]//8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Palo Alto:AIAA, 2002.

[18] HERRLIN M K. Rack cooling effectiveness in data centers and telecom central offices:the rack cooling index(RCI)[J]. Transactions-American Society of Heating Refrigerating and Air conditioning Engineers, 2005,111(2):725.

[19] HERRLIN M K. Improved data center energy efficiency and thermal performance by advanced airflow analysis[C]//Proceedings of Digital Power Forum. San Francisco:Darnell Group, 2007.

[20]张量,许鹏.数据中心热工环境评价指标综述[J].建筑节能, 2014(6):92-96.

[21] ASHRAE. ASHRAE thermal guidelines for data processing environments:expanded data center classes and usage guidance:TC 9.9[S]. Peachtree Corners, GA:ASHRAE, 2011.

基本信息:

DOI:

中图分类号:TP308;TB657.2

引用信息:

[1]赵思源,李振海,李凯等.数据中心列间送风方式对热环境影响的研究[J].制冷技术,2025,45(03):43-49.

基金信息:

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文