23 | 0 | 36 |
下载次数 | 被引频次 | 阅读次数 |
采用单因素实验法,对一种典型的基于风量旁通和串联式外置辅助冷凝器的闭式热泵烘干系统进行了实验研究,研究物料装载量、循环风速、膨胀阀开度以及空气旁通率对单位能耗除湿量(SMER)的影响规律。结果表明:在最佳制冷剂充注量(645 g)和相同烘干时间下,装置存在最佳物料装载量(1.845 kg);随着循环风速的增大,SMER先增大后减小;减小膨胀阀开度可增大过热度,同时降低蒸发温度,增大除湿量,提高SMER,与过热度为5℃的情况相比,系统总能耗最大降幅达10.7%,SMER最大增幅达20%;系统存在一个最佳空气旁通率(0.6),相比无旁通,最佳旁通率下系统SMER提升35.7%。
Abstract:An experimental study is conducted using the single-factor experimental method on a closed-loop heat pump drying system incorporating air bypass and series-connected external auxiliary condenser. The research focused on analyzing the influence principles of material loading, circulating air velocity, expansion valve opening and air bypass rate on the specific moisture extraction rate(SMER). The results demonstrated that under optimal refrigerant charge(645 g) and identical drying duration, the system exhibited an optimal material loading of 1.845 kg. SMER is initially observed to increase then decrease with rising air circulation velocity. Superheat is increased and evaporation temperature is decreased by reducing the expansion valve opening, leading to enhanced dehumidification capacity and SMER. Maximum energy consumption reduction of 10.7% and SMER improvement of 20% are achieved by this configuration compared to 5 ℃ superheat conditions. An optimal air bypass ratio of 0.6 is identified for the system, resulting in a 35.7% SMER enhancement relative to non-bypass operation.
[1]贺飞,唐兰,黎清荐.太阳能辅助热泵干燥技术及其研究进展[J].建筑节能, 2016, 44(7):46-50.
[2]刘登瀛,曹崇文.探索我国干燥技术的新型发展道路[J].通用机械, 2006(7):15-17.
[3]方德斌,董炜,余谦.低碳转型趋势下中国能源消费结构优化[J].技术经济, 2016, 35(7):71-79.
[4]卢达雄,宋霞,雷强,等.带回热器的CO2列车热泵系统低温工况制热性能实验研究[J].制冷技术, 2023,43(1):30-36.
[5]许琦,张希,张兴伟,等.空气源复叠式热泵系统性能的模拟分析[J].制冷技术, 2023, 43(2):1-7.
[6]蔡志敏,李凡,李春来.空气源热泵烘干机组研究现状及发展趋势[J].科技创新与应用, 2022, 12(21):77-80.
[7]王浩,武卫东,吕婉豆,等.循环风量对串联辅助冷凝器的闭式热泵烘干系统的影响[J].制冷技术, 2019,39(1):55-60.
[8]初琦,陈杰. 2019年度中国空气源热泵行业热点分析[J].制冷技术, 2020, 40(增刊1):97-103.
[9]李阳,余萌,沈俊,等.基于相变蓄热的空气源热泵系统蓄放热性能实验研究[J].制冷技术, 2023, 43(3):8-15.
[10]黄佳兵.闭式热泵干燥系统除湿性能与调控技术研究[D].广州:广州大学, 2018.
[11] LIU S C, LI X Q, SONG M J, et al. Experimental investigation on drying performance of an existed enclosed fixed frequency air source heat pump drying system[J]. Applied Thermal Engineering, 2018, 130:735-744.
[12]穆欢.多功能封闭式热泵干燥系统的性能研究[D].广州:广州大学, 2019.
[13]吕东阳,姜志宏.制冷系统循环风量对热泵干燥除湿性能的影响[J].林产工业, 2022, 59(8):40-45.
[14] REN Y, CHEN Z, WU W, et al. Study on the effect of circulating air volume on the performance of closed loop heat pump drying system[J]. Applied Thermal Engineering,2022, 210:118362.
[15] YOUSAF K, LIU H, GAO X, et al. Influence of environmental conditions on drying efficiency and heat pump performance in closed and open loop drying of paddy[J]. Drying Technology, 2020, 38(16):2217-2230.
[16]程同,李娟玲,杨道龙.全封闭空气能CO2热泵干燥系统的研制[J].江苏农业科学, 2016, 44(7):403-406.
[17] BANTLE M, KVALSVIK K H, TOLSTOREBROV I.Performance simulation of a heat pump drying system using R744 as refrigerant[C]//Proceedings of the 12th IIR Gustav Lorentzen Conference on Natural Refrigerants. Edinburgh:IIF-IIR, IoR, 2016.
[18] WANG Y, LI M, QIU Y, et al. Performance analysis of a secondary heat recovery solar-assisted heat pump drying system for mango[J]. Energy Exploration and Exploitation, 2019, 37(4):1377-1387.
[19] LI W, SHENG W, ZHANG Z, et al. Experiment on performance of corn drying system with combination of heat pipe and multi-stage series heat pump equipment[J].Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(4):278-284.
[20]李振博,武卫东,孔德军,等.辅助冷凝器冷却水进水温度对闭式热泵干燥系统性能的影响[J].制冷技术,2020, 40(4):55-61.
[21]李伟钊,盛伟,张振涛,等.热管联合多级串联热泵玉米干燥系统性能试验[J].农业工程学报, 2018, 34(4):278-284.
[22] MOHAMMADI I, TABATABAEKOLOOR R,MOTEVALI A. Effect of air recirculation and heat pump on mass transfer and energy parameters in drying of kiwifruit slices[J]. Energy, 2019, 170:149-158.
基本信息:
DOI:
中图分类号:TQ051.892
引用信息:
[1]赵冉,冯业,梁坤峰等.闭式热泵烘干系统运行参数耦合关系研究[J].制冷技术,2025,45(02):1-8+14.
基金信息: