8 | 0 | 3 |
下载次数 | 被引频次 | 阅读次数 |
为了研究回热器带来的制冷系统吸气过热度(SSH)不稳定问题,本文采用系统仿真和样机测试方法,研究了回热器带来的系统特性变化,分析了回热器对系统SSH控制稳定性的影响。结果表明:回热器的引入,使SSH对膨胀阀开度变化的响应幅值增加,响应速度变慢。当环境温度为2℃时,回热器打开后,过热度对膨胀阀开度的阶跃响应幅值从0.96℃增至1.99℃,上升时间从33.4 s增至46.4 s。导致SSH控制回路的稳定裕度降低,更容易引发控制不稳定。通过减小SSH控制回路的比例-积分-微分(PID)参数,可以有效改善回热器系统的SSH控制稳定性。将SSH控制的PID参数各降低50%,当环境温度为2℃时,过热度偏离目标值±3℃以上的振荡时间从原来的12 min缩短至3 min以内。测试结果还进一步验证了新控制参数在不同工况下的适用性。
Abstract:To investigate the instability issue of suction superheat(SSH) control caused by regenerator, the effect of regenerator on system operating characteristics and SSH control stability by dynamic simulation and prototype test is analyzed. It has been found that refrigerant system configured with regenerator delivers higher SSH gain and slower response speed towards the same expansion valve opening change. At 2℃ ambient temperature, the static gain of SSH to the step change of expansion valve opening increases from 0.96℃ to 1.99℃, and the rising time extends from 33.4 s to 46.4 s when regenerator is configured, which is further leads to less stability margin for the system configured with regenerator. To solve the instability issue caused by regenerator, it has been demonstrated that smaller proportion integration differentiation(PID) parameters in SSH control loop greatly improved the SSH control stability. Prototype test shows that the duration of SSH instability where the oscillation amplitude is higher than 3℃ can be shortened from 12 min to 3 min by reducing the PID parameters by 50%. The applicability of the proposed PID parameters over the operating map is further validated by test.
[1]王子轩,姚晔,赵鹏生.高维度集中空调系统优化控制模型及算法研究[J].制冷技术, 2021, 41(4):20-26.
[2]杨志强,丁智,王灵.船用自复叠制冷系统与双级压缩制冷系统热力性能对比研究[J].制冷技术, 2024, 44(2):30-37.
[3]李鑫,夏宇栋,景妮洁,等.变频压缩式制冷系统控制方法研究综述[J].杭州电子科技大学学报(自然科学版),2021, 41(6):50-59.
[4] GOYAL A, STAEDTER M A, GARIMELLA S. A review of control methodologies for vapor compression and absorption heat pumps[J]. International Journal of Refrigeration, 2019, 97:1-20.
[5]宋海,樊明敬,宁前,等. CO2双温压缩/喷射空调系统性能研究[J].制冷技术, 2024, 44(5):16-20.
[6] SALEH B, ALY A A. Flow control methods in refrigeration systems:a review[J]. International Journal of Control, Automation and Systems, 2015, 4(1):14-25.
[7] ZHANG Q, CANOVA M. Modeling and output feedback control of automotive air conditioning system[J].International Journal of Refrigeration, 2015, 58:207-218.
[8] RASMUSSEN B P, ALLEYNE A G. Gain scheduled control of an air conditioning system using the Youla parameterization[J]. IEEE Transactions on Control Systems Technology, 2010, 18(5):1216-1225.
[9] ELLIOTT M S, RASMUSSEN B P. On reducing evaporator superheat nonlinearity with control architecture[J]. International Journal of Refrigeration,2010, 33(3):607-614.
[10] MAIA A A T, SILVA M D A, KOURY R N N, et al.Control of an electronic expansion valve using an adaptive PID controller[C]//International Refrigeration and Air Conditioning Conference. Purdue:Purdue University,2010.
[11] BEGHI A, CECCHINATO L, RAMPAZZO M. On-line,auto-tuning control of electronic expansion valves[J].International Journal of Refrigeration, 2011, 34(4):1151-1161.
[12]李庚,吴爱国,温海棠.制冷系统NPID控制器优化设计研究[J].计算机仿真, 2016, 33(9):339-344.
[13] XIA Y, DU J, DENG S. Effects of superheat nonlinearity on the operational stability of a direct expansion(DX)air conditioning(A/C)system[J]. Energy Procedia, 2017, 142:1854-1859.
[14] TESFAY M, ALSALEEM F, ARUNASALAM P, et al.Adaptive-model predictive control of electronic expansion valves with adjustable setpoint for evaporator superheat minimization[J]. Building and Environment,2018, 133:151-160.
[15]郭晓鹏,周大志.电子膨胀阀控制器优化研究[J].制冷技术, 2019, 39(2):72-75.
[16] LIU H, CAI J. Improved superheat control of variablespeed vapor compression systems in provision of fast load balancing services[J]. International Journal of Refrigeration, 2021, 132:187-196.
[17]吴晓敏,王维城, WEBB R L.回热器对制冷系统性能的影响[J].上海理工大学学报, 2001, 23(3):247-251.
[18] YANG M, YIN X, SHAO S. Simulation and optimization of scroll compressor with intermediate discharge valve for VRF system performance improvement[C]//Proceedings of the 26th International Congress of Refrigeration. Paris:French Association of Refrigeration, 2023.
[19] BLOCHWITZ T, OTTER M, AKESSON J, et al.Functional mockup interface 2.0:the standard for tool independent exchange of simulation models[C]//Proceedings of the 9th International Modelica Conference.Munich:Modelica Association, 2012.
[20]多尔夫,毕晓普.现代控制系统[M].北京:电子工业出版社, 2015.
基本信息:
DOI:
中图分类号:TB657
引用信息:
[1]张子杨.回热器对制冷系统过热度控制稳定性的影响分析[J].制冷技术,2025,45(03):69-74+91.
基金信息: